Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Mol Cell Biol ; 25(1): 7, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486170

RESUMO

BACKGROUND: In recent years, the role of autophagy has been highlighted in the pathogenesis of diabetes and inflammatory lung diseases. In this study, using a diabetic model of mice, we investigated the expression of autophagy-related genes in the lung tissues following melatonin administration. RESULTS: Data showed histopathological remodeling in lung tissues of the D group coincided with an elevated level of IL-6, Becline-1, LC3, and P62 compared to the control group (p < 0.05). After melatonin treatment, histopathological remodeling was improved D + Mel group. In addition, expression levels of IL-6, Becline-1, LC3, and P62 were decreased in D + Mel compared to D group (P < 0.05). Statistically significant differences were not obtained between Mel group and C group (p > 0.05). CONCLUSION: Our results showed that melatonin injection can be effective in the amelioration of lung injury in diabetic mice presumably by modulating autophagy-related genes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Lesão Pulmonar , Melatonina , Animais , Camundongos , Lesão Pulmonar/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Interleucina-6 , Autofagia
2.
J Am Chem Soc ; 146(7): 4680-4686, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324776

RESUMO

Precious-metal-free spinel oxide electrocatalysts are promising candidates for catalyzing the oxygen reduction reaction (ORR) in alkaline fuel cells. In this theory-driven study, we use joint density functional theory (JDFT) in tandem with supporting electrochemical measurements to identify a novel theoretical pathway for the ORR on cubic Co3O4 nanoparticle electrocatalysts, which aligns more closely with experimental results than previous models. The new pathway employs the cracked adsorbates *(OH)(O) and *(OH)(OH), which, through hydrogen bonding, induce spectator surface *H. This results in an onset potential closely matching experimental values, in stark contrast to the traditional ORR pathway, which keeps adsorbates intact and overestimates the onset potential by 0.7 V. Finally, we introduce electrochemical strain spectroscopy (ESS), a groundbreaking strain analysis technique. ESS combines ab initio calculations with experimental measurements to validate the proposed reaction pathways and pinpoint rate-limiting steps.

3.
Cell Commun Signal ; 22(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167133

RESUMO

BACKGROUND: Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION: Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Evasão Tumoral , Imunoterapia , Antígenos de Neoplasias , Neoplasias/terapia
4.
Cell Biochem Funct ; 41(8): 1008-1015, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843018

RESUMO

Exosomes, heterogeneous, membrane-bound nanoparticles that originated from eukaryotic cells, contribute to intracellular communication by transferring various biomolecules both on their surface and as internal cargo. One of the most significant current discussions on cancer progression is noncoding RNAs cargo of exosomes, which can regulate angiogenesis in tumor. A growing body of evidence shows that exosomes from tumor cells contain various microRNAs, long noncoding RNAs, and circular RNAs that can promote tumor progression by inducing angiogenesis. However, some noncoding RNAs may inhibit cancer angiogenesis. Targeting angiogenic noncoding RNA of exosomes may serve as a hopeful implement for cancer therapy. In this review, we discuss the latest knowledge of the roles of exosomal noncoding RNAs in tumor angiogenesis Understanding the biology of exosomal noncoding RNAs can help scientists plan exosomes-based innovations for the treatment of cancer angiogenesis and cancer biomarkers.


Assuntos
Exossomos , MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Estudos Prospectivos , Neoplasias/genética , Neoplasias/patologia , MicroRNAs/genética , RNA não Traduzido/genética , RNA Longo não Codificante/genética , Exossomos/genética , Exossomos/patologia , Biomarcadores Tumorais/genética
5.
Mol Biol Rep ; 50(9): 7589-7595, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37528312

RESUMO

BACKGROUND: High-fat diets (HFD) have recently become a public health concern. We hypothesize that HFD induces exosomes biogenesis in the lung tissue of rat model. METHODS AND RESULTS: Sixteen adult male Wistar rats were fed with HFD or a regular chow diet for 3 months. The histopathological changes in lung tissues were measured by hematoxylin and eosin (H&E) staining. Bronchoalveolar lavage (BAL) was performed to assay exosomes by acetylcholinesterase enzyme (AhCE) activity. Real-time PCR (qPCR) was used to evaluate Rab27-b, Alix, and IL-1ß expression, while the immunohistochemical examination was performed for CD81 expression in lung tissues. In addition, expression of IL-1ß was detected by ELISA. We found pathological alterations in the lung tissue of HFD animals. AhCE activity along with the expression level of Rab27-b, Alix, and IL-1ß was increased in HFD animals (p < 0.05). Immunohistochemical staining showed that expression of CD81 was increased in lung tissues of HFD animals compared with the control group (p < 0.05). CONCLUSION: Hence, HFD induced exosomes biogenesis and histopathological changes with IL-1ß expression in rats' lung tissues.


Assuntos
Dieta Hiperlipídica , Exossomos , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Acetilcolinesterase , Pulmão/patologia
6.
J Diabetes Metab Disord ; 22(1): 793-800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255788

RESUMO

Background: Despite the vulnerability of pulmonary tissue to diabetic conditions, there are few reports related to the detrimental effects of hyperglycemia and therapeutic modalities on lung parenchyma. Here, the apoptotic changes were monitored in the diabetic pulmonary tissue of mice (DM1) subjected to a four‒week swimming plan. Methods: The mice were randomly allocated into Control; Control + Swimming (S); Diabetic group (D); and Diabetic + Swimming (D + S) groups (each in 8 mice). In the D and D + S groups, mice received intraperitoneally 50 mg/kg of streptozotocin (STZ). After 14 days, swimming exercise was done for four weeks. The expression of il-1ß, bcl-2, bax, and caspase-3 was investigated using real-time PCR analysis. A histological examination was performed using H&E staining. Results: DM1 significantly upregulated il-1ß, bax, and caspase-3, and down-regulated bcl-2 compared to the non-diabetic mice (p < 0.05). We noted that swimming exercises reversed the expression pattern of all genes in the diabetic mice and closed to basal levels (p < 0.05). Data indicated that swimming exercise could diminish emphysematous changes, and interstitial pneumonitis induced by STZ. Along with these changes, swimming exercise had protective effects to reduce the thickness of the inter-alveolar septum and mean alveolar area in diabetic mice. Conclusion: These data demonstrated that swimming exercises could decrease DM1-related pathologies in mouse lungs by regulating apoptosis and inflammatory response.

7.
Life Sci ; 320: 121566, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907326

RESUMO

Despite the massive efforts advanced over recent years in emerging therapies for neurodegenerative diseases, effective treatment for these diseases is still an urgent need. The application of mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) as a novel therapy for neurodegenerative diseases holds great promise. A growing body of data now suggests that an innovative cell-free therapy, MSCs-Exo, may establish a fascinating alternative therapy due to their unique advantages over MSCs. Notable, MSCs-Exo can infiltrate the blood-brain barrier and then well distribute non-coding RNAs into injured tissues. Research shows that non-coding RNAs of MSCs-Exo are vital effectors that participate in the treatment of neurodegenerative diseases through neurogeneration and neurite outgrowth, modulation of the immune system, reducing neuroinflammation, repairmen of damaged tissue, and promotion of neuroangiogenesis. In addition, MSCs-Exo can serve as a drug delivery system for delivering non-coding RNAs to neurons in neurodegenerative conditions. In this review, we summarize the recent progress in the therapeutic role of non-coding RNAs of MSCs-Exo for various neurodegenerative diseases. This study also discusses the potential drug delivery role of MSCs-Exo and challenges and opportunities in the clinical translation of MSCs-Exo-based therapies for neurodegenerative diseases in the future.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia
8.
Bioimpacts ; 13(1): 43-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817001

RESUMO

Introduction: The current experiment aimed to address the impact of type 2 diabetes mellitus on autophagy status in the rat pulmonary tissue. Methods: In this study, 20 male Wistar rats were randomly allocated into two groups as follows: control and diabetic groups. To induce type 2 diabetes mellitus, rats received a combination of streptozotocin (STZ) and a high-fat diet. After confirmation of diabetic condition, rats were maintained for 8 weeks and euthanized for further analyses. The pathological changes were assessed using H&E staining. We also measured transforming growth factor-ß (TGF-ß), bronchoalveolar lavage fluid (BALF), and tumor necrosis factor-α (TNF-α) in the lungs using ELISA and real-time PCR analyses, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were monitored in diabetic lungs to assess oxidative status. We also measured the expression of becline-1, LC3, and P62 to show autophagic response under diabetic conditions. Using immunofluorescence staining, protein levels of LC3 was also monitored. Results: H&E staining showed pathological changes in diabetic rats coincided with the increase of TNF-α (~1.4-fold) and TGF-ß (~1.3-fold) compared to those in the normal rats (P<0.05). The levels of MDA (5.6 ± 0.4 versus 6.4 ± 0.27 nM/mg protein) were increased while SOD (4.2 ± 0.28 versus 3.8 ± 0.13 U/mL) activity decreased in the diabetic rats (P<0.05). Real-time polymerase chain reaction (PCR) analysis showed the up-regulation of Becline-1 (~1.35-fold) and LC3 (~2-fold) and down-regulation of P62 (~0.8-fold) (P<0.05), showing incomplete autophagic flux. We noted the increase of LC3+ cells in diabetic condition compared to that in the control samples. Conclusion: The prolonged diabetic condition could inhibit the normal activity of autophagy flux, thereby increasing pathological outcomes.

9.
Biosens Bioelectron ; 222: 114980, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521207

RESUMO

The tumor microenvironment consists of a multiplicity of cells such as cancer cells, fibroblasts, endothelial cells, and immune cells within the specific parenchyma. It has been indicated that cancer cells can educate other cells within the tumor niche in a paracrine manner by the release of nano-sized extracellular vesicles namely exosomes (Exo), resulting in accelerated tumor mass growth. It is suggested that exosomal cargo with remarkable information can reflect any changes in metabolic and proteomic profiles in parent tumor cells. Therefore, exosomes can be touted as prognostic, diagnostic, and therapeutic elements with specific biomarkers in patients with different tumor types. Despite the advantages, conventional exosome separation and purification protocols are time-consuming and laborious with low abnormal morphology and purity rate. During the last decades, biosensor-based modalities, as emerging instruments, have been used to detect and analyze Exo in biofluids. Due to suitable specificity, sensitivity, and real-time readout, biosensors became promising approaches for the analysis of Exo in in vitro and in vivo settings. The inherent advantages and superiority of electrochemical biosensors in the determination of tumor grade based on exosomal cargo and profile were also debated. Present and future challenges were also discussed related to the application of electrochemical biosensors in the clinical setting. In this review, the early detection of several cancer types associated with ovaries, breast, brain, colon, lungs, T and B lymphocytes, liver and rare types of cancers were debated in association with released exosomes.


Assuntos
Técnicas Biossensoriais , Exossomos , Neoplasias , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Proteômica , Células Endoteliais/química , Biomarcadores Tumorais/análise , Neoplasias/patologia , Microambiente Tumoral
10.
Cell Biochem Funct ; 41(1): 78-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335538

RESUMO

It has been shown that type 2 Diabetes Mellitus (T2DM) changes the paracrine activity of several cell types. Whether the biogenesis of exosomes is changed during diabetic conditions is the subject of debate. Here, we investigated the effect of T2M on exosome biogenesis in rat pulmonary tissue. Rats received a high-fat diet regime and a single low dose of Streptozocin to mimic the T2DM-like condition. A total of 8 weeks after induction of T2DM, rats were subjected to several analyses. Besides histological examination, vascular cell adhesion molecule 1 (VCAM-1) levels were detected using immunohistochemistry (IHC) staining. Transcription of several genes such as IL-1ß, Alix, and Rab27b was calculated by real-time polymerase chain reaction assay. Using western blot analysis, intracellular CD63 levels were measured. The morphology and exosome secretion activity were assessed using acetylcholinesterase (AChE) assay and scanning electron microscopy, respectively. Histological results exhibited a moderate-to-high rate of interstitial pneumonia with emphysematous changes. IHC staining showed an increased VCAM-1 expression in the diabetic lungs compared with the normal conditions (p < .05). Likewise, we found the induction of IL-1ß, and exosome-related genes Alix and Rab27b under diabetic conditions compared with the control group (p < .05). Along with these changes, protein levels of CD63 and AChE activity were induced upon the initiation of T2DM, indicating accelerated exosome biogenesis. Taken together, current data indicated the induction of exosome biogenesis in rat pulmonary tissue affected by T2DM. It seems that the induction of inflammatory niche is touted as a stimulatory factor to accelerate exosome secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Exossomos , Pneumonia , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Exossomos/metabolismo , Acetilcolinesterase/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo , Pulmão/metabolismo
11.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430452

RESUMO

There remains a vital necessity for new therapeutic approaches to combat metastatic cancers, which cause globally over 8 million deaths per year. Mesenchymal stem cells (MSCs) display aptitude as new therapeutic choices for cancer treatment. Exosomes, the most important mediator of MSCs, regulate tumor progression. The potential of harnessing exosomes from MSCs (MSCs-Exo) in cancer therapy is now being documented. MSCs-Exo can promote tumor progression by affecting tumor growth, metastasis, immunity, angiogenesis, and drug resistance. However, contradictory evidence has suggested that MSCs-Exo suppress tumors through several mechanisms. Therefore, the exact association between MSCs-Exo and tumors remains controversial. Accordingly, the applications of MSCs-Exo as novel drug delivery systems and standalone therapeutics are being extensively explored. In addition, engineering MSCs-Exo for targeting tumor cells has opened a new avenue for improving the efficiency of antitumor therapy. However, effective implementation in the clinical trials will need the establishment of standards for MSCs-Exo isolation and characterization as well as loading and engineering methods. The studies outlined in this review highlight the pivotal roles of MSCs-Exo in tumor progression and the promising potential of MSCs-Exo as therapeutic drug delivery vehicles for cancer treatment.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Neoplasias , Humanos , Neovascularização Patológica , Neoplasias/terapia
12.
Iran J Basic Med Sci ; 25(10): 1267-1274, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311189

RESUMO

Objectives: Although various studies have revealed the beneficial effects of crocin (derived from saffron), such as anti-inflammatory, anti-cancer, antioxidant, and immune modulator, however, its exact mechanism is unknown. The present study aimed to investigate the effect of crocin on the expression ratio of T-bet/GATA-3 as an indicator of altered immune responses in the lung tissue of ovalbumin (OVA)-sensitized mice. In addition, the effect of crocin on the expression level of miR-146a and miR-106a in the lung tissue OVA-sensitized mice was investigated. Materials and Methods: Mice were randomly divided into five groups (n=6): Control; OVA, OVA + Crocin 25, OVA + Cro 50, and OVA + Cro100 groups. Crocin was administrated intraperitoneally at doses of 25, 50, and 100 mg/kg for five consecutive days. One day after asthma induction, animals were euthanized, and lungs were sampled for pathological and gene expression analysis. Results: OVA-sensitization led to increased inflammation and histopathological changes in the lung tissue of mice. In addition, GATA-3 expression increased (P<0.001) and T-bet expression decreased (P<0.001) in OVA-sensitized groups. The T-bet/GATA3 ratio was also reduced markedly in asthma groups (P<0.001). Furthermore, increased expression of miR-146a and miR-106a levels was evident in the lung tissue of OVA-sensitized mice (P<0.001 for both). Intervention with high concentrations of crocin (50 and 100 mg/kg) significantly reduced airway inflammation, GATA-3 expression, miR-146a expression, and miR-106a expression and corrected the T-bet/GATA-3 ratio (P<0.05 to P<0.001). Conclusion: Treatment with crocin led to a decrease in the severity of lung inflammation in OVA-sensitized mice, which is probably through the reduction of the T-bet/GATA-3 ratio, and mir-146a and mir-106a expression level.

13.
Life Sci ; 308: 120935, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075472

RESUMO

Extracellular vesicles (EVs), phospholipid membrane-bound vesicles, produced by most cells, contribute to cell-cell communication. They transfer several proteins, lipids, and nucleic acids between cells both locally and systemically. Owing to the biocompatibility and immune activity of EVs, therapeutic approaches using these vesicles as drug delivery systems are being developed. Different methods are used to design more effective engineered EVs, which can serve as smart tools in cancer therapy and immunotherapy. Recent progress in the field of targeted-cancer therapy has led to the gradual use of engineered EVs in combinational therapy to combat heterogeneous tumor cells and multifaceted tumor microenvironments. The high plasticity, loading ability, and genetic manipulation capability of engineered EVs have made them the ideal platforms to realize numerous combinations of cancer therapy approaches. From the combination therapy view, engineered EVs can co-deliver chemotherapy with various therapeutic agents to target tumor cells effectively, further taking part in immunotherapy-related cancer combination therapy. However, a greater number of studies were done in pre-clinical platforms and the clinical translation of these studies needs further scrutiny because some challenges are associated with the application of engineered EVs. Given the many therapeutic potentials of engineered EVs, this review discusses their function in various cancer combination therapy and immunotherapy-related cancer combination therapy. In addition, this review describes the opportunities and challenges associated with the clinical application of engineered EVs.


Assuntos
Vesículas Extracelulares , Neoplasias , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapêutico , Fosfolipídeos/metabolismo , Microambiente Tumoral
14.
J Air Waste Manag Assoc ; 72(7): 647-661, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775658

RESUMO

Homeowners burn wood of a wide range of species and moisture content (MC) in residential cordwood and pellet stoves. An effective emission certification test protocol must account for and accurately measure the impact of those variables in order to ensure a reasonable correlation between laboratory results and in-use emissions and to promote the design and manufacture of cleaner burning appliances. This study explored the effect of wood species and MC on emissions and efficiency in four cordwood and four pellet stoves. PM emissions were consistently lower with pellets manufactured from softwood than for hardwood species and were highly correlated with ash content. Higher MC oak fuel substantially increased PM emissions in a non-catalytic cordwood stove; however, a hybrid cordwood stove was able to meet federal emissions limits even with the higher MC fuel. The results of this study, in combination with previous research, suggest that certification tests that use softwood fuel likely report lower emissions than tests that use hardwood. Requiring hardwood and higher MC cordwood fuel in certification tests would enable the assessment of an appliance's ability to operate well even when fuel conditions are not optimized.Implications: The emission testing results reported in this paper call into question the adequacy of the fuel moisture content and fuel species specifications in testing protocols approved for certifying compliance with EPA's New Source Performance Standards for cordwood and pellet stoves. We recommend changes in those specifications, including the prohibition of testing with Douglas fir and other low ash softwood species, requiring the use of cordwood test fuel with a higher moisture content, and requiring pellet stoves to be tested using hardwood pellets. Adoption of these measures would increase the replicability of tests. allow for the identification of stoves that are unlikely to perform well in the field when fuel conditions are not ideal, and, ultimately, result in the design of cleaner burning stoves.


Assuntos
Utensílios Domésticos , Madeira , Produtos Domésticos
15.
J Air Waste Manag Assoc ; 72(7): 629-646, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775660

RESUMO

The US Environmental Protection Agency's (EPA's) New Source Performance Standards (NSPS) for Residential Wood Heaters (RWH) require certification emission testing of prototype appliances. In 2015, EPA revised those standards to further reduce particulate matter emissions from this critical source. However, to achieve that goal, lower emissions measured in certification tests must reflect lower emissions when the appliance is operated in homes. Woodstove certification tests have used either the Federal Reference Method (FRM), a crib wood method, or a cordwood testing method developed by ASTM International that was designated as a broadly applicable Alternative Test Method (ATM) by the EPA until December 2021, when that status was revoked. There is broad agreement that the FRM and ASTM procedures do not simulate typical fueling and operating of wood stoves in the field, raising questions about the efficacy of the current program. Effective emission reduction efforts require robust, accurate, and reproducible test methods. With input from a range of stakeholders, the Northeast States for Coordinated Air Use Management (NESCAUM) developed the Integrated Duty Cycle Test Method for Certification of Wood-Fired Stoves Using Cordwood (IDC), a cordwood testing protocol designed to improve the efficacy of residential wood heater certification testing. That method was approved by EPA as a broadly applicable ATM in 2021. IDC test runs assess appliance performance under a range of operating and fueling conditions representative of typical consumer use patterns. Unlike previous test methods, the IDC protocol requires three replicate runs to assess appliance performance variability. Including variable fueling and operating conditions, along with the requirement for replicates runs, will increase the effectiveness of certification testing and promote the development of improved wood stove technology. This paper reports on experiments conducted to develop and test the IDC method.Implications: Residential wood heating is one of the largest sources of primary particulate matter pollution nationwide. EPA's New Source Performance Standards (NSPS) establish emission limits for this source category and require certification testing of prototype wood appliances to demonstrate compliance with those limits. However, the operating and fueling requirements in NSPS compliance testing protocols do not represent typical conditions in the field. We developed a new testing approach, the Integrated-Duty Cycle (IDC) Test Method, to address the shortcomings of current certification test approaches. The IDC procedure for cordwood stoves, which was approved by EPA as a broadly applicable alternative test method in 2021, assesses appliance operations over various operating and fueling conditions representing typical consumer use patterns in an integrated run and requires three replicate runs to enable the assessment of variability in stove performance. Stoves certified with this method will be equipped to meet the NSPS limits consistently in field operation.


Assuntos
Poluentes Atmosféricos , Utensílios Domésticos , Poluentes Atmosféricos/análise , Calefação/métodos , Produtos Domésticos , Material Particulado/análise
16.
J Air Waste Manag Assoc ; 72(7): 662-678, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775661

RESUMO

The U.S. Environmental Protection Agency (US EPA) requires residential wood heaters (RWHs) to meet particulate matter (PM) emission limits in order to lower ambient concentrations and reduce public exposure. The current US EPA dilution tunnel PM measurement methods for RWHs were developed several decades ago and use manual filter samples to generate a single PM value for tests that can last more than 12 hours for stoves and 30 hours for central heating appliances. This approach results in averaging periods of high and low emissions together and provides limited data on emissions over the entire burn profile. Over the last decade, the U.S. ambient fine particulate monitoring network has transitioned to the routine use of online automated methods. However, stationary source measurement methods have not made this transition. There are no substantial technical issues in implementing real-time automated methods to measure PM for RWH emission certification purposes. The Thermo Scientific Tapered Element Oscillating Microbalance (TEOM™) has been widely used for ambient PM measurements. It is a true inertial mass measurement with high time resolution and sensitivity. This work compares measurements obtained using a Thermo 1400 or 1405 TEOM with ASTM E2515 manual filter samples, the current US EPA Federal Reference Method, for 172 test runs across a wide range of stoves and PM loading conditions. The TEOM measurements used the same filter media, similar filter face velocities, and filter temperatures as manual methods. PM measurements were well correlated (R2 > 0.9), with TEOM values typically lower by 5% to 10%. TEOM data capture was high, with filter changes resulting in ~5 minutes of lost data, usually once or twice during a multi-hour test. We discuss differences between the two methods, such as post-sampling equilibration and measurement of PM on sample train surfaces (probe "catch"). We also provide examples of substantial non-water semi-volatile mass loss during sampling.Implications: Measurement methods for continuous PM and our understanding of their performance has dramatically improved over the last thirty years. Highly time-resolved measurements of PM from residential wood heating appliances in an appliance certification testing context provide additional insight into both appliance performance and the suitability of the test method to assess that performance. This continuous measurement approach offers new opportunities to replace traditional US regulatory PM sampling integrated manual source methods like ASTM E2515 or EPA Method 5G testing. For measurement of combustion products that can have a wide range of physical and chemical characteristics, the TEOM's actual mass measurement principle has advantages over the sensitivity of surrogate methods to different aerosols for use in a regulatory program. Although the TEOM is commonly used to measure ambient PM, it can readily be configured to meet the needs of continuous emission testing.


Assuntos
Utensílios Domésticos , Material Particulado , Aerossóis/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Madeira/química
17.
Biochem Pharmacol ; 203: 115167, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35820499

RESUMO

An ideal drug delivery system should selectively deliver incorporated therapeutics to the target site, escape from immune cells recognition and degradation, and act controlled release of incorporated therapeutics in the site targeted. Extracellular vesicles (EVs) have gained great attention for their potential application as a drug delivery system in nanomedicine. EVs such as exosomes are membrane-bound vesicles that contribute to intracellular communication by transferring various biomolecules including RNAs, proteins, and lipids. EVs derived from mesenchymal stem cells (MSCs-EVs) have several advantages such as low immunogenicity, high biocompatibility, and stability against conventional synthetic carriers, opening new avenues for delivering theaputic agents to target cells. To obtain modified MSCs-EVs, several loading methods are used to incorporate different therapeutic agents including proteins, RNAs, and chemotherapeutic drugs into MSCs-EVs. In addition, modification of MSCs-EVs surface may improve their potential in targeted therapies. Modified MSCs-EVs have been shown to improve many diseases including, cancer, cardiovascular diseases, and diabetes mellitus. While land greatly potential, the application of MSCs-EVs as a drug-delivery system has been hampered by several challenges. Clinical translation of modified-EVs needs further scrutiny. In this review, we discuss the biogenesis and production of EVs along with the loading and modification methods of MSCs-EVs. We also describe numerous MSCs-EVs based delivery studies with a focus on advantages and challenges when using them as a drug delivery system.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nanomedicina
18.
Iran J Basic Med Sci ; 25(1): 96-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35656445

RESUMO

Objectives: The exact role of the progenitor cell types in the dynamic healing of asthmatic lungs is lacking. This investigation was proposed to evaluate the effect of intratracheally administered rat bone marrow-derived c-kit+ cells on ovalbumin-induced sensitized male rats. Materials and Methods: Forty rats were randomly divided into 4 groups; healthy rats received phosphate-buffered saline (PBS) (C); sensitized rats received PBS (S); PBS containing C-kit- cells (S+C-kit-); and PBS containing C-kit+ cells (S+C-kit+). After two weeks, circulatory CD4+/CD8+ T-cell counts and pulmonary ERK/NF-ƙB signaling pathway as well as the probability of cellular differentiation were assessed. Results: The results showed that transplanted C-Kit+ cells were engrafted into pulmonary tissue and differentiated into epithelial cells. C-Kit+ cells could increase the number of CD4+ cells in comparison with the S group (P<0.001); however, they diminished the level of CD8+ cells (P<0.01). Moreover, data demonstrated increased p-ERK/ERK ratio (P<0.001) and NF-ƙB level (P<0.05) in sensitized rats compared with the C group. The administration of C-kit+, but not C-Kit-, decreased p-ERK/ERK ratio and NF-ƙB level compared with those of the S group (P<0.05). Conclusion: The study revealed that C-Kit+ cells engrafted into pulmonary tissue reduced the NF-ƙB protein level and diminished p-ERK/ERK ratio, leading to suppression of inflammatory response in asthmatic lungs.

19.
J Diabetes Metab Disord ; 21(1): 353-359, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35673474

RESUMO

Background: To date, many investigators have tried to clarify the molecular mechanism of cardiovascular injuries after T1D. In present study, we evaluated the possible effects of melatonin on the levels of aging-related factors in the heart tissue of streptozotocin-induced diabetic mice. Methods: 40 male mice were enrolled in this study and randomly allocated into 4 groups (n = 10) as follows: Control group (C), Control group + melatonin (CM), Diabetic group (D), Diabetic + melatonin (DM) group. Single Streptozotocin (50 mg/kbW) was applied for the induction of T1D. 3 mg/kg melatonin was injected intraperitoneally twice a week for consequent four weeks. After the completion of this period, the animals were sacrificed and their heart tissue was obtained for histological examination (IHC analysis of vWF and α-SMA cells), aging and inflammation-related gene analysis. Result: Hematoxylin and Eosin staining indicated cardiomyocyte toxicity in T1D mice. IHC analysis of vascular tissue showed the detachment of vWF and α-SMA cells and disintegration into the vascular lumen. Additionally, real-time PCR assay showed the up-regulation of ß-galactosidase and suppression of SOX2, Klotho, and Telomerase genes in T1D mice compared to the control group (p < 0.05). We noted that melatonin administration can revert these condition and closed near-to-control levels. Along with these conditions, the levels of IL-1ß were also decreased after melatonin treatment. Conclusions: In general, one can hypothesize that modulation of different effectors associated with aging is beneficial to alleviate cardiac injuries under hypergylcemic condition. Melatonin can exert its therapeutic effects, in part, through anti-aging capacity.

20.
J Nanobiotechnology ; 20(1): 310, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765003

RESUMO

BACKGROUND: Hydrogels based on organic/inorganic composites have been at the center of attention for the fabrication of engineered bone constructs. The establishment of a straightforward 3D microenvironment is critical to maintaining cell-to-cell interaction and cellular function, leading to appropriate regeneration. Ionic cross-linkers, Ca2+, Ba2+, and Sr2+, were used for the fabrication of Alginate-Nanohydroxyapatite-Collagen (Alg-nHA-Col) microspheres, and osteogenic properties of human osteoblasts were examined in in vitro and in vivo conditions after 21 days. RESULTS: Physicochemical properties of hydrogels illustrated that microspheres cross-linked with Sr2+ had reduced swelling, enhanced stability, and mechanical strength, as compared to the other groups. Human MG-63 osteoblasts inside Sr2+ cross-linked microspheres exhibited enhanced viability and osteogenic capacity indicated by mineralization and the increase of relevant proteins related to bone formation. PCR (Polymerase Chain Reaction) array analysis of the Wnt (Wingless-related integration site) signaling pathway revealed that Sr2+ cross-linked microspheres appropriately induced various signaling transduction pathways in human osteoblasts leading to osteogenic activity and dynamic growth. Transplantation of Sr2+ cross-linked microspheres with rat osteoblasts into cranium with critical size defect in the rat model accelerated bone formation analyzed with micro-CT and histological examination. CONCLUSION: Sr2+ cross-linked Alg-nHA-Col hydrogel can promote functionality and dynamic growth of osteoblasts.


Assuntos
Osteogênese , Estrôncio , Alginatos/farmacologia , Animais , Colágeno , Durapatita , Hidrogéis/farmacologia , Ratos , Estrôncio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...